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Abstract
Via the Posilicano method, Schrödinger operators with singular potentials
supported by Brownian paths in the configuration space R

d , 1 � d � 5,
are constructed. The essential, absolutely continuous and singular continuous
spectra are determined almost surely (with respect to Wiener measure). It is
shown that the set of positive eigenvalues is discrete and that the wave operators
exist and are asymptotically complete almost surely; if d � 3 then the set of
positive eigenvalues is even empty almost surely. A trace formula for the
number (counting multiplicities) of negative eigenvalues is derived.

PACS number: 02.30.Tb
Mathematics Subject Classification: 47A60

1. Introduction

In a wide variety of models in quantum field theory, one studies a family (Hω) of Schrödinger
operators in L2(R4, λ4)(λd being the Lebesgue measure) with potentials supported by a
Brownian path. Here severe mathematical problems arise from the very beginning. Due to
the fact that the c1-capacity of a ‘typical path of a Brownian particle in R

4’ equals zero, Kato’s
quadratic form method cannot be used in order to define the operator Hω (cf the introduction
in [Bra] for a detailed discussion of this point).

Instead one has worked with ultraviolet cutoff [Cher] or nonstandard analysis [AFHL].
The spectral analysis of the operators constructed via these methods is, however, extremely
difficult; in fact, virtually nothing is known about their spectra.

Recently, Posilicano [Pos1] presented a new method for the construction of singularly
perturbed self-adjoint operators (cf also [Bra, Pos2]). In particular, he demonstrated that his
method can be used for the construction of Schrödinger operators with potentials supported by
Brownian paths if the dimension d of R

d is less than or equal to 5 [Pos1, example 3.6]. In this
paper, we shall provide a detailed spectral analysis of a particular class of such operators; our
operators are chosen such that their resolvents have a fairly simple form. We shall determine
the essential spectra, prove existence and completeness of wave operators, absence of singular
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continuous spectra and positive eigenvalues, and derive a trace formula for the expectation
value of the number (counting multiplicities) of negative eigenvalues.

Our operators are, in particular, self-adjoint extensions of the restriction ST
ω of the free

Hamiltonian to the space of smooth functions with compact support in the complement of
the Brownian path �T

ω (defined by (2.6) below). For almost all (w.r.t. to the Wiener measure)
ω the symmetric operator ST

ω is lower semibounded and has infinite deficiency indices. It
has been shown that the spectra of self-adjoint extensions of lower semibounded symmetric
operators with infinite deficiency indices strongly depend on the special choice of the self-
adjoint extension (cf, e.g., [ABN]). In particular, for other classes of Schrödinger operators
with potentials supported by Brownian paths (cf [Pos1]) one may get spectral properties
different from those derived for the special class discussed in this paper.

Finally, let us mention an important open problem. The operators discussed in this paper
are not form-local in the sense of the definition given in [Sh2]. It is an interesting and difficult
open problem to obtain lower semibounded, form-local singular perturbations supported on
Brownian paths. For the solution of this problem, it may be necessary to choose the self-
adjoint extensions of ST

ω in a more complicated way. This is due to the strong irregularity of
the Brownian paths, as a simpler situation described in [Sh1] suggests.

2. Preliminaries and notation

2.1. Capacity and quasi-continuity

L2(Rd) = L2(Rd , λd) denotes the space of (equivalence classes) of functions which are
square-integrable w.r.t. the Lebesgue measure λd and f̂ the Fourier transform of f . Let
s > 0.H s(Rd) denotes the Sobolev space of all f ∈ L2(Rd) such that

‖f ‖Hs :=
(∫

(1 + x2)s/2|f̂ (x)|2λd(dx)

)1/2

< ∞. (2.1)

The cs-capacity of the compact set K ⊂ R
d is defined by

cs(K) := inf‖f ‖2
Hs ,

where the infimum is taken over all f in the space C∞
0 (Rd) of smooth functions f with

compact support satisfying f (x) � 1 for all x ∈ K . The cs-capacity of an arbitrary Borel set
B is defined by

cs(B) := sup cs(K), (2.2)

where the supremum is taken over all compact subsets of B.
The function g : R

d −→ C is quasi-continuous w.r.t. the cs-capacity if and only if for
every ε > 0 there exists an open subset Oε of R

d such that

cs(Oε) < ε

and the restriction of g to the complement R
d\Oε is continuous. Every f ∈ Hs(Rd)

has a representative f̃ which is quasi-continuous w.r.t. the cs-capacity. If f̃ and f ◦ are
representatives of f ∈ Hs(Rd) and quasi-continuous w.r.t. the cs-capacity then the cs-capacity
of the set {x ∈ R

d : f̃ (x) �= f ◦(x)} equals zero. In the present paper f̃ denotes any
representative of f ∈ Hs(Rd) which is quasi-continuous w.r.t. the cs-capacity; this notation
does not indicate which s is meant, but this will always be clear from the context.

If µ(B) = 0 for every Borel set B satisfying cs(B) = 0 and∫
|f̃ |2 dµ < ∞, f ∈ Hs(Rd), (2.3)
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then we can define the mapping Jsµ : Hs(Rd) −→ L2(Rd , µ) by

Jsµf := f̃ µ-a.e., f ∈ Hs(Rd). (2.4)

2.2. Wiener measure and occupation time measure

� denotes the space C(R+, R
d) of continuous functions ω : R+ = [0,∞) −→ R

d and W the
Wiener measure on �. With 0 < T < ∞ being fixed, the occupation time measure µT

ω on the
Borel algebra B(Rd) of R

d is defined via

µT
ω(B) := λ1({t : 0 � t � T , ω(t) ∈ B}), B ∈ B(Rd). (2.5)

The topological support of the occupation time measure µT
ω equals the set

�T
ω := {ω(t) : 0 � t � T }. (2.6)

2.3. Singular perturbations

Let s, α > 0. We put

Gsα := (−� + α)−s and Gα := G1α = (−� + α)−1 (2.7)

where −� is the self-adjoint operator in L2(Rd) defined by

D(−�) := H 2(Rd), −�f := −
d∑

j=1

∂2f

∂x2
j

, f ∈ H 2(Rd),

and derivatives have to be understood in the distributional sense.
An operator H belongs to the set AT

ω if and only if

H is a self-adjoint operator in L2(Rd),

C∞
0

(
R

d
∖
�T

ω

) ⊂ D(H),

Hf = −�f, f ∈ C∞
0

(
R

d
∖
�T

ω

)
,

H �= −�.

(2.8)

If there exists an s < 2 such that µT
ω(B) = 0 for every Borel set B satisfying cs(B) = 0

and

µT
ω(B) = 0, if cs(B) = 0, and

∫
|f̃ |2 dµT

ω < ∞, f ∈ Hs(Rd), (2.9)

then we can define the mapping J T
ω : H 2(Rd) −→ L2

(
R

d , µT
ω

)
by

J T
ω f := f̃ µT

ω -a.e., f ∈ H 2(Rd)
(
i.e. J T

ω = J2µT
ω

)
(2.10)

and there exists a unique operator HT
ωα ∈ AT

ω such that −α belongs to the resolvent set of HT
ωα

and (
HT

ωα + α
)−1 = Gα +

(
J T

ω Gα

)∗(
J T

ω Gα

)
, (2.11)

cf [Bra, theorem 9].
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2.4. Wave operators and Schatten classes

The wave operators W±(H,−�) exist provided

W±(H,−�)f := lim
t∓∞ eitH eit�f

exist for every f ∈ L2(Rd). The wave operators W±(H,−�) are asymptotically complete if
and only if

ran(W +(H,−�)) = ran(W−(H,−�)) = (Hpp(H))⊥

(i.e. every state f can be decomposed into the orthogonal sum of a bound state fb and a state fs

such that the system behaves asymptotically as a free system provided the initial state equals
fs). The wave operators W±(H,−�) are asymptotically complete if and only if the singular
continuous spectrum σsc(H) is empty and the operators W±(H,−�) are complete, i.e,

ran(W +(H,−�)) = ran(W−(H,−�)) = Hac(H).

Here Hpp(H) and Hac(H) denote the pure point spectral subspace (the closure of the span of
the eigenvectors) of H and the absolutely continuous spectral subspace of H, respectively.

In order to prove existence and completeness of wave operators one often uses Schatten
classes. Let C : H1 −→ H2 be a compact linear bounded mapping. There exists an
orthonormal basis {ei}i∈I of H2 and non-negative numbers λi, i ∈ I , such that

√
CC∗ei = λiei, i ∈ I.

The family {λi}i∈I is unique up to permutations. We put

‖C‖Sp
:=

(∑
i∈I

λ
p

i

)1/p

(�∞), 0 < p < ∞.

C belongs to the Schatten class of order p provided ‖C‖Sp
< ∞. We define ‖C‖Sp

= ∞ if C
is not compact.

We shall repeatedly use the following well-known facts: along with C also B1CB2 and
the adjoint C∗ belong to the Schatten class Sp for all bounded operators B1 and B2. Moreover,
CK ∈ Sr provided C ∈ Sp,K ∈ Sq and 1/p + 1/q = 1/r .

3. Compactness and Schatten norms

Let d � 5. Our first goal is to show that the condition (2.9) is satisfied for W-a.a. ω ∈ �. As
mentioned, this guarantees that for W-a.a. ω ∈ � there exists a unique operator HT

ωα ∈ AT
ω

such that −α belongs to the resolvent set of HT
ωα and (2.11) holds. If the dimension d is larger

than 5 then the c2-capacity of the set �T
ω (cf (2.1), (2.2) and (2.6)) equals zero W-a.s. and the

set AT
ω is empty W-a.s.

We shall prove (2.3) with the aid of lemma 3.1 below which might be useful in other
contexts, too. Let s, α > 0 and d ∈ N.

There exist rotationally symmetric functions ksα : R
d −→ [0,∞] and gsα : R

d −→
[0,∞] satisfying

k̂sα(p) = (p2 + α)−s/2, ĝsα(p) = (p2 + α)−s , λd -a.e., (3.1)

cf [SW]. We choose ksα and gsα such that they are continuous on R
d if possible (i.e. if s > d

respectively s > d/2); otherwise we choose them such that they are continuous on R
d\{0}

and equal to ∞ at 0. gsα is the convolution kernel of the operator (−� + α)−s on L2(Rd , λd).



Interactions along Brownian paths in R
d, d � 5 4759

Lemma 3.1. Let G
µ
sα be the integral operator with kernel gsα(x − y) (cf (3.1)) in L2(Rd , µ).

If G
µ
sα is bounded then the measure µ does not charge any set with cs-capacity zero and∫

|ṽ|2 dµ �
∥∥Gµ

sα

∥∥((−� + α)s/2v, (−� + α)s/2v)L2(Rd ,λd ), v ∈ Hs(Rd). (3.2)

The estimate (3.2) is sharp.

Proof. Denote by K
µ
sα the integral operator with kernel ksα(x − y) (cf (3.1)) from L2(Rd , µ)

to L2(Rd , λd). Then the adjoint operator K
µ∗
sα is the integral operator from L2(Rd , λd) to

L2(Rd , µ) with the same kernel ksα(x − y).
Let f ∈ L2(Rd , µ), f � 0µ-a.e. Then∫∫
ksα(x − y)f (y)µ(dy)

∫
ksα(x − z)f (z)µ(dz)λd(dx)

=
∫∫∫

ksα(x − y)ksα(x − z)λd(dx)f (y)µ(dy)f (z)µ(dz)

=
∫

f (y)

∫
gsα(y − z)f (z)µ(dz)µ(dy)

= (
f,Gµ

sαf
)
L2(Rd ,µ)

�
∥∥Gµ

sα

∥∥‖f ‖2
L2(Rd ,µ)

< ∞.

In the second step we have used that∫
ksα(x − y)ksα(x − z)λd(dx) = gsα(y − z).

Thus we arrive at∥∥Kµ∗
sα

∥∥2 �
∥∥Gµ

sα

∥∥ < ∞.

For every f in the Schwartz space of rapidly decreasing smooth functions the function

v(·) :=
∫

ksα(· − y)f (y)λd(dy)

also belongs to Schwartz space S(Rd); in particular, v is continuous. Note that v is a
representative of both (−� + α)−s/2f and K

µ∗
sα f . Moreover,∫

|v|2 dµ = ∥∥Kµ∗
sα f

∥∥2
L2(Rd ,µ)

�
∥∥Kµ∗

sα

∥∥2‖f ‖2
L2(Rd ,λd )

�
∥∥Gµ

sα

∥∥(v, (−� + α)sv)L2(Rd ,λd ) � c‖v‖2
Hs(Rd )

(3.3)

for some finite constant c independent of v.
If the cs-capacity cs(K) of the compact set K equals zero then there exist vn in the Schwartz

space S(Rd) satisfying

vn � 1 on K and ‖vn‖Hs(Rd ) −→ 0, as n −→ ∞.

By (3.3), it follows that cs(K) = 0. By the inner regularity of the cs-capacity and the measure
µ, this implies that cs(B) = 0 for every Borel set B such that µ(B) = 0.

Let v ∈ Hs(Rd). Take any vn, n ∈ N, in the Schwartz space S(Rd) converging to v in
Hs(Rd) as n tends to infinity. By (3.3), there exists an h ∈ L2(Rd , µ) such that

vn −→ h as n −→ ∞ in L2(Rd , µ).
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Moreover, there exists a subsequence {vnj
} of {vn} such that

vnj
−→ ṽ cs-q.e. as n −→ ∞.

Since the measure µ does not charge any set with cs-capacity zero it follows that ṽ = h almost
everywhere with respect to the measure µ, and that ṽ ∈ L2(Rd, µ) and∫

|ṽ|2 dµ = lim
n−→∞

∫
|vn|2 dµ

� lim
n−→∞

∥∥Gµ
sα

∥∥(vn, (−� + α)svn)L2(Rd ,λd )

= ∥∥Gµ
sα

∥∥((−� + α)s/2v, (−� + α)s/2v)L2(Rd ,λd ).

Since G
µ
sα = Jsµ(JsµGsα)∗ = (

JsµG
1/2
sα

)(
JsµG

1/2
sα

)∗ = K
µ∗
sα K

µ
sα the operator G

µ
sα is non-

negative and self-adjoint, and∥∥Gµ
sα

∥∥ = ∥∥Kµ
sα

∥∥2
. (3.4)

We choose a sequence {fn} in S(Rd) such that ‖fn‖L2(Rd ,λd ) = 1 for every n ∈ N

and
∥∥K

µ∗
sα fn

∥∥
L2(Rd ,λd )

−→ ∥∥K
µ∗
sα

∥∥. We put vn := (−� + α)−s/2fn, n ∈ N. Then
(vn, (−� + α)svn) = 1 for every n ∈ N and (3.3) and (3.4) yield∫

|vn|2 dµ −→ ∥∥Gµ
sα

∥∥, as n −→ ∞,

i.e, inequality (3.2) is sharp. �

Remark 3.2. (a) With the aid of the above lemma we can immediately rediscover a well-
known result on measures in Kato classes. Let 0 < s < d/2. Let µ be a measure in the Kato
class w.r.t. the operator (−�)s , i.e,

lim
ε−→0

sup
x∈R

d

∫
|y−x|�ε

1

|x − y|d−2s
µ(dy) = 0.

Then the Schur test in combination with the facts that gsα(x) tends to zero uniformly on
{x : |x| > ε} as α tends to infinity and that there exists a finite constant c independent of α

such that gsα(x) � c|x|2s−d for all x ∈ R
d yields that the operator norm

∥∥G
µ
sα

∥∥ of g
µ
sα tends

to zero as α tends to infinity. Thus (3.2) implies that
∫ |ṽ|2 dµ is an infinitesimal small form

perturbation of the operator (−�)s . (b) For s � 1 the operator (−�)s is associated with
a Dirichlet form; we refer to [Amor] for a partial generalization of the above lemma in the
Dirichlet case.

By lemma 3.1, (2.3) holds provided that the operator G
µ
sα is bounded for some s < 2.

Actually, this operator even belongs to the Schatten class of order 4 if s > d/2 − 1:

Lemma 3.3. Let s > d/2 − 1, α > 0 and for ω ∈ � let G
µT

ω
sα be the integral operator in

L2
(
R

d, µT
ω

)
with the kernel gsα(x − y) defined by (3.1). Then

E
∥∥G

µT
·

sα

∥∥4
S4

< ∞,

i.e., the expectation value (w.r.t. to the Wiener measure W) of
∥∥G

µT
·

sα

∥∥4
S4

is finite. In particular,

W-a.s. the operator G
µT

ω
sα belongs to the Schatten class S4 of order 4. Moreover,

E
∥∥G

µT
·

sα

∥∥4
S4

−→ 0, α −→ ∞.
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Proof. First let µ be any positive Radon measure on R
d . Then∥∥Gµ

sα

∥∥4
S4

= ∥∥(
Gµ

sα

)2∥∥2
S2

=
∫∫ (∫

gsα(x − z)gsα(z − y)µ(dz)

)2

µ(dx)µ(dy)

=
∫∫∫∫

gsα(x − z)gsα(z − y)gsα(x − a)gsα(a − y)µ(dz)µ(dx)µ(dy)µ(da).

If µ equals the occupation time measure µT
ω then this implies, by the general transformation

theorem, that∥∥G
µT

ω
sα

∥∥4
S4

=
∫ T

0

∫ T

0

∫ T

0

∫ T

0
gsα(ω(t1) − ω(t3))gsα(ω(t3) − ω(t2))gsα(ω(t1) − ω(t4))

× gsα(ω(t4) − ω(t2)) dt1 dt2 dt3 dt4. (3.5)

For every element π of the symmetric group S4 let

Mπ := {(t1, t2, t3, t4) ∈ [0, T ]4 : tπ(1) < tπ(2) < tπ(3) < tπ(4)}.
Up to a set with Lebesgue measure zero the domain of integration in (3.5), i.e. the set [0, T ]4,
equals the disjoint union of the 24 sets Mπ, π ∈ S4.

By using Gaussian kernels

pt(x) := (2π |t |)−d/2 e− x2

2|t |

we can derive an expression for the expectation value of the integral over the set Mπ for every
π ∈ S4. For instance, in the case π(j) = j for j = 1, 2, 3, 4 we get

E

∫
0�t1<t2<t3<t4�T

gsα(ω(t1) − ω(t3))gsα(ω(t3) − ω(t2))gsα(ω(t1) − ω(t4))

× gsα(ω(t4) − ω(t2)) dt1 dt2 dt3 dt4

=
∫

0�t1<t2<t3<t4�T

∫
R

d

∫
R

d

∫
R

d

pt2−t1(x)pt3−t2(y)pt4−t3(z)gsα(x + y)gsα(y)

× gsα(x + y + z)gsα(y + z)λd(x)λd(y)λd(z) dt1 dt2 dt3 dt4. (3.6)

The function gsα tends exponentially fast to zero at infinity. Moreover, it is bounded if
2s > d, has a logarithmic singularity at 0, if 2s = d, and satisfies

gsα(x) � cα|x|2s−d , x ∈ R
d , (3.7)

for some finite constant cα if 2s < d. lim supα−→∞ cα < ∞. Moreover, gsα(x) −→ 0, as
α −→ ∞, for every x ∈ R

d\{0}. In what follows, we shall treat the last case, 2s < d; the
other two cases can be treated in an analogous way and are even more simple.

By (3.7), the integrand on the right-hand side of (3.6) is, up to a constant, bounded by

pt2−t1(x)pt3−t2(y)pt4−t3(z)|x + y|2s−d |y|2s−d |x + y + z|2s−d |y + z|2s−d .

A straightforward but tedious computation shows that∫
0�t1<t2<t3<t4�T

∫
R

d

∫
R

d

∫
R

d

pt2−t1(x)pt3−t2(y)pt4−t3(z)|x + y|2s−d |y|2s−d

(3.8)
× |x + y + z|2s−d |y + z|2s−dλd(x)λd(y)λd(z) dt1 dt2 dt3 dt4 < ∞

provided s > d/2 − 1. Thus

E

∫
0�t1<t2<t3<t4�T

gsα(ω(t1) − ω(t3))gsα(ω(t3) − ω(t2))gsα(ω(t1) − ω(t4))

× gsα(ω(t4) − ω(t2)) dt1 dt2 dt3 dt4 < ∞



4762 J F Brasche

for every α > 0 and

E

∫
0�t1<t2<t3<t4�T

gsα(ω(t1) − ω(t3))gsα(ω(t3) − ω(t2))gsα(ω(t1) − ω(t4))

× gsα(ω(t4) − ω(t2)) dt1 dt2 dt3 dt4 −→ 0, α −→ ∞.

The remaining 23 domains of integration can be treated in a similar manner and we get
that

E

∫
[0,T ]4

gsα(ω(t1) − ω(t3))gsα(ω(t3) − ω(t2))gsα(ω(t1) − ω(t4))

× gsα(ω(t4) − ω(t2)) dt1 dt2 dt3 dt4 < ∞
for every α > 0 and

E

∫
[0,T ]4

gsα(ω(t1) − ω(t3))gsα(ω(t3) − ω(t2))gsα(ω(t1) − ω(t4))

× gsα(ω(t4) − ω(t2)) dt1 dt2 dt3 dt4 −→ 0, α −→ ∞.

By (3.5), we have proved the lemma. �

4. Wave operators, continuous spectral subspaces and positive eigenvalues

In this section, we shall present results on the scattering theory for the operators HT
ωα and

related results on their spectra. Moreover, we shall prove the absence of singular continuous
spectra and, for d � 3, also the absence of positive eigenvalues.

Theorem 4.4. Let the dimension d of R
d be less than 5 or equal to 5 and α > 0. For W-a.a.

ω ∈ � let HT
ωα be the self-adjoint operator defined by (2.7), (2.10) and (2.11). Then the

following is true for W-a.a. ω ∈ �:

(i) The essential spectrum of HT
ωα equals [0,∞).

(ii) The wave operators W±(
HT

ωα,−�
)

exist and are asymptotically complete.
(iii) The singular continuous spectrum of HT

ωα is empty, the set of the positive eigenvalues of
HT

ωα is discrete and every positive eigenvalue of HT
ωα (if there is any) has finite multiplicity.

(iv) The absolutely continuous part of HT
ωα is unitarily equivalent to the operator −� and, in

particular, the absolutely continuous spectrum of HT
ωα equals [0,∞).

(v) If d � 3 then the operator HT
ωα has no positive eigenvalue.

Proof. (i) We have

G
µT

ω

2α = J T
ω G

1/2
2α

(
J T

ω G
1/2
2α

)∗ = J T
ω Gα

(
J T

ω Gα

)∗
. (4.9)

Since 2 > d/2 − 1, this equation and lemma 3 imply that

J T
ω Gα ∈ S8 for W-a.a. ω ∈ �. (4.10)

By (2.11) and (4.10),(
HT

ωα + α
)−1 − (−� + α)−1 = J T

ω Gα

(
J T

ω Gα

)∗ ∈ S4 for W-a.a. ω ∈ �. (4.11)

Since every operator in Sp is, in particular, compact, and the operators HT
ωα and −� are

self-adjoint, Weyl’s essential spectrum theorem together with (4.11) implies the assertion (i).
(ii) The wave operators exist and are asymptotically complete provided that the singular

continuous spectra are empty and the wave operators exist and are complete. We shall prove
the absence of singular continuous spectra below, under (iii).
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The wave operators exist and are complete provided that there exists an N ∈ N such that
the operator

DT
αωN := (Hωα + α)−N − (−� + α)−N

is compact and

(Hωα + α)−NDT
αωN(−� + α)−N ∈ S1, (4.12)

cf [Dem].
It follows immediately from (4.11) and the identity

DT
αωN =

N−1∑
j=0

(Hωα + α)−j ((Hωα + α)−1 − (−� + α)−1)(−� + α)−(N−1−j)

that the operator DT
αωN is compact for W-a.a. ω ∈ �. Thus we need only to prove that (4.12)

is true W-a.s. for some N ∈ N.
For k > d/2 the integral operator J T

ω Gk
α has a continuous convolution kernel vanishing

exponentially fast at infinity. Thus(
J T

ω Gα

)∗
J T

ω GαGj
α ∈ S2, j > d/2 − 1,

Gj
α

(
J T

ω Gα

)∗
J T

ω Gα ∈ S2, j > d/2 − 1.
(4.13)

Let N ∈ N and N > d. Since(
HT

ωα + α
)−1 − (−� + α)−1 = (

J T
ω Gα

)∗
J T

ω Gα

(cf (2.11)), the operator DT
αωN is the sum of 2N − 1 terms where every term has the form

A
(
J T

ω Gα

)∗
J T

ω GαGj
αB

or

AGj
α

(
J T

ω Gα

)∗
J T

ω GαB

or

A
(
J T

ω Gα

)∗
J T

ω GαB
(
J T

ω Gα

)∗
J T

ω GαC

for some bounded operators A,B,C and some j > d/2 − 1. By (4.11) and (4.13), each of
these terms belongs to the Hilbert–Schmidt class S2. Thus

DT
αωN ∈ S2 for W-a.a. ω ∈ � (if N > d). (4.14)

We have(
HT

ωα + α
)−N

DT
αωN(−� + α)−N = DT

αωNDT
αωN + (−� + α)−NDT

αωN(−� + α)−N .

For W-a.a. ω ∈ � the first term on the right-hand side belongs to the trace class S1 since it is
the product of two Hilbert–Schmidt operators. The second term is the sum of 2N−1 operators
where every operator has the form

AGN
α

(
J T

ω Gα

)∗
BJT

ω GαGN
α C

for some bounded operators A,B,C. Applying again (4.13) we get that each of these 2N−1

operators is the product of two Hilbert–Schmidt operators and therefore also an operator in
the trace class. Thus (4.12) holds W-a.s. for every N > d.

(iii) Let D := {z ∈ C : Re(z) > 0 or Im(z) > 0}, and Dext := D ∪ {z ∈ C : Re(z) > 0}.
It is sufficient to prove that for W-a.a. ω ∈ � there exists a discrete set C such that for every
f ∈ C∞

0 (Rd) the mapping

z 
→ (
f,

(
HT

ωα + z
)−1

f
)
D −→ C

has an analytic continuation on Dext. C may depend on ω.
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In fact, suppose that such a discrete set C and such an analytic extension exist. Let
f ∈ C∞

0 (Rd). Let −∞ < a < b < 0 be such that [a, b] ∩ C = ∅. Then there exists an ε > 0
such that

{x + iy : a � x � b, 0 � y � ε} ∩ C = ∅.

Since continuous mappings are bounded on compact sets and the mapping z 
→(
f,

(
HT

ωα + z
)−1

f
)

has a continuation on a neighbourhood of the compact set {x + iy :
a � x � b, 0 � y � ε} we get

sup
a�x�b,0<y�ε

∣∣(f,
(
HT

ωα + z
)−1

f
)∣∣ < ∞.

Since the space C∞
0 (Rd) is dense in L2(Rd) and by the limiting absorption principle ([RS4],

theorem XIII.19), this implies that

σsc
(−HT

ωα

) ∩ (a, b) = ∅ = σp

(−HT
ωα

) ∩ (a, b).

Since C is discrete it follows that σsc
(−HT

ωα

) ∩ (−∞, 0] is at most countable. This is only
possible if σsc

(−HT
ωα

) ∩ (−∞, 0) = ∅. Moreover, by (i) and the fact that σsc
(−HT

ωα

) ⊂
σess

(−HT
ωα

)
, we also have σsc

(−HT
ωα

) ∩ (0,∞) = ∅.
It remains to prove the existence of the mentioned continuation. By (4.10), J T

ω Gα is
compact W-a.s. and therefore J T

ω is also compact W-a.s. Trivially, the range of J T
ω is dense

in L2
(
R

d , µT
ω

)
. Thus, by [Bra, theorem 3], (−∞,−α] belongs to the resolvent set of HT

ωα and(
HT

ωα + β
)−1 = Gβ +

(
J T

ω Gβ

)∗(
I − (α − β)J T

ω Gα

(
J T

ω Gβ

)∗)−1
J T

ω Gβ,

β > α, W-a.s. (4.15)

In what follows let ω be any element of � such that J T
ω is compact. Let

gz(x) := 1

2
√

z
e−√

z|x|, x ∈ R, d = 1,

respectively,

1

(2π)d/2

( |x|
−√−z

)1−d/2

Kd/2−1(−
√

z|x|), x ∈ R
d\{0}, d > 1.

Here we choose the root as follows:
√

r exp(iφ) = √
r exp(iφ/2) for r > 0 and −π/2 < φ <

3π/2. Then

ĝz(p) = 1

p2 + z
, Re(z) > 0 or Im(z) > 0,

(cf [SW]) and this definition of gz(x) is in accordance with (3.1). If Re(z) < 0 and Im(z) � 0
then gz is not square-integrable w.r.t. the Lebesgue measure. Note that the function z 
→ gz(x)

is analytic on Dext for x �= 0 (every x if d = 1).
For z ∈ D we define the operator Gz in L2(Rd) by Gz := (−� + z)−1. For z ∈ Dext

let G
µT

ω
z be the integral operator in L2

(
R

d , µT
ω

)
with the kernel gz(x − y). By the preceding

considerations, we need only to prove that there exists a discrete set C such that

(α)I − (α − z)G
µT

ω
z is invertible in L2

(
R

d , µT
ω

)
for every z ∈ Dext, and (β) the

mapping z 
→ (
f,Gzf +

(
J T

ω Gz̄

)∗[
I − (α − z)G

µT
ω

z

]−1
JGzf

)
is analytic on Dext\C for

every f ∈ C∞
0 (Rd).

A straightforward computation yields analyticity of the mapping z 
→ G
µT

ω
z and (α) and

(β) follow from Fredholm’s analytic theorem.
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(iv) It is well known that the spectrum σ(−�) of −� equals [0,∞) and that −� equals
its absolutely continuous part (−�)ac. Since the wave operators W±(

HT
ωα,−�

)
exist and are

complete for W-a.a. ω ∈ � this implies, by [RS3, XI 3, proposition 1], that the wave operators
W±(

HT
ωα,−�

)
are unitary mappings from L2(Rd, λd) onto the absolutely continuous spectral

subspaces of W±(
HT

ωα,−�
)

and

HT
ωα = W±(

HT
ωα,−�

)−1
(−�)W±(

HT
ωα,−�

)
, W-a.s

In particular, the operators HT
ωα and −� have the same absolutely continuous spectrum and

therefore

σac
(
HT

ωα

) = σac(−�) = σ(−�) = [0,∞). �

By the last theorem, the set of positive eigenvalues of the operator HT
ωα is discrete. In

the case when d � 3 the complement of a typical path �T
ω of a Brownian particle in R

d

is connected. Together with a unique continuation theorem this provides a much stronger
statement about positive eigenvalues in the case d � 3:

Theorem 4.5 Let d � 3. For every ω ∈ � let HT
ω be any self-adjoint operator in L2(Rd , λd)

such that the space C∞
0

(
R

d
∖
�T

ω

)
is contained in the domain of HT

ω and

HT
ω f = −�f, f ∈ C∞

0

(
R

d
∖
�T

ω

)
.

Then W-a.s. the operator HT
ω has no positive eigenvalue.

Proof. Let ω ∈ � be such that �T
ω has Lebesgue measure zero and its complement R

d
∖
�T

ω is
connected. Then the set C∞

0

(
R

d
∖
�T

ω

)
is dense in L2(Rd , λd) and the adjoint of the restriction

of −� to this space is an extension of HT
ω ,

HT
ω ⊂ (−��C∞

0

(
R

d
∖
�T

ω

))∗ =: −�T
ω,max.

Let E > 0 and HT
ω f = Ef . Then∫

R
d

Ef̄ (x)g(x)λd(dx) = (−�T
ω,maxf, g

)
=

∫
R

d

f̄ (x)(−�g)(x)λd(dx), g ∈ C∞
0

(
R

d
∖
�T

ω

)
.

By Weyl’s regularity theorem, it follows that f is infinitely differentiable on R
d
∖
�T

ω and

HT
ω f (x) = −

d∑
j=1

∂2f

∂x2
j

= Ef λd -a.e. on R
d
∖
�T

ω . (4.16)

Let B be any ball containing �T
ω . Since −∑d

j=1
∂2

∂x2
j

f = Ef λd -a.e. on the complement

of B and f ∈ L2(Rd , λd) we have f = 0 λd -a.e. on R
d\B (cf, e.g., the proof of [RS4,

theorem XIII.56]). By [RS4, theorem XIII.63] and (4.16), it follows that f = 0λd -a.e. on the
connection component of R

d
∖
�T

ω containing B. Since R
d
∖
�T

ω is connected and the Lebesgue
measure of the compact set �T

ω equals zero it follows that f = 0λd -a.e. Thus E is not an
eigenvalue of HT

ω .
Since d � 3 and the two-dimensional Hausdorff measure of �T

ω equals zero for W-a.a.
ω ∈ � the Lebesgue measure of �T

ω equals zero and the complement of �T
ω is connected for

W-a.a. ω ∈ �. �
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5. A trace formula for the expectation value of the number of negative eigenvalues

In this section, we shall derive a trace formula for the number of negative eigenvalues of
the operators HT

ωα provided 3 � d � 5. By mimicking the reasoning below and using the
Klaus–Newton method (cf [Kl, Newt] and the extension in [BEKS]), similar results can be
derived for d = 1, 2 as well.

Let

Aα0 := (−� + α)(−�)

α
. (5.17)

By lemma 3.3 and (4.9), for W-a.a. ω ∈ � the operator J T
ω from H 2(Rd) to L2

(
R

d , µT
ω

)
(cf (2.10)) is compact and for every ε > 0 there exists an a(α, ε, ω) < ∞ such that∥∥J T

ω f
∥∥2

L2(Rd ,µT
ω )

� ε
∥∥A

1/2
α0 f

∥∥2
L2(Rd ,λd )

+ a(α, ε, ω)‖f ‖2
L2(Rd ,λd )

, f ∈ H 2(Rd). (5.18)

Thus W-a.s. the quadratic form ET
α0ω in L2(Rd , λd), defined by

D
(
ET

α0ω

) = H 2(Rd), (5.19)

ET
α0ω(f, g) = (

A
1/2
α0 f,A

1/2
α0 g

) −
∫

f̃ g̃ dµT
ω, f, g ∈ H 2(Rd), (5.20)

is lower semibounded and closed. We denote by Aα0 − µT
ω the unique lower semibounded

self-adjoint operator in L2(Rd , λd) associated with ET
α0ω.

Let N1(ω, T ) and N2(ω, T ) be the number (counting multiplicities) of negative
eigenvalues of the operator HT

ωα and Aα0 − µT
ω , respectively. By [Bra], corollary 8,

N1(·, T ) = N2(·, T ) W-a.s. (5.21)

Let

Gα0γ := (Aα0 + γ )−1. (5.22)

By [Bra], (28),(
Aα0 − µT

ω + γ
)−1 = Gα0γ +

(
J T

ω Gα0γ

)∗(
1 − J T

ω

(
J T

ω Gα0γ

)∗)−1
J T

ω Gα0γ (5.23)

for every γ > 0 such that −γ belongs to the resolvent set of Aα0 − µT
ω . Let

KT
ωαγ := 1(1,∞)

(
J T

ω

(
J T

ω Gα0γ

)∗)
. (5.24)

Modifying the Birman–Schwinger analysis in an obvious way, we can derive from (5.23) that
the number of eigenvalues below −γ of Aα0 − µT

ω equals
∥∥KT

·αγ

∥∥
S1

W-a.s.

In particular, the number of negative eigenvalues of HT
ωα is less than or equal to ‖Gα00‖4

S4
.

By the considerations in the proof of lemma 3.3 (cf, in particular, formula (3.8)), the
expectation value of the last expression is finite if 3 � d � 5. Thus we have proved the
following theorem.

Theorem 5.6. Let 3 � d � 5 and α > 0. For W-a.a. ω ∈ � let HT
ωα be the self-adjoint

operator defined by (2.7), (2.10) and (2.11). Then for W-a.a. ω ∈ � the number (counting
multiplicities) of negative eigenvalues of HT

ωα equals the trace norm of the operator KT
ωα0,

defined by (5.24). In particular, the expectation value (w.r.t. Wiener measure) for the number
(counting multiplicities) of negative eigenvalues of HT

ωα is finite.

Remark 5.7. In a forthcoming paper, we shall derive further results on the negative
eigenvalues. In particular, we shall show that for every N ∈ N the probability that the
number of negative eigenvalues of HT

ωα is at least N is strictly positive. On the other hand,
these probabilities tend rapidly to zero, as N tends to infinity. In fact, the above theorem
implies that the sum over N times the probability that the number of negative eigenvalues of
HT

ωα equals N is finite; here the sum is taken over all positive integers N.
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